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f

: The heat transfer coefficient between a molten charge and its surroundings in a Bridgman furnace was experimentally determined

using m-sttu temperature measurement. The ampoule containing an isothermal melt was suddenly moved from a higher temperature
' zone to a lower temperature zone. The temperature-time history was used in a lumped-capacity cooling model to evaluate the heat

i transfer coefficient between the charge and the furnace. The experimentally determined heat transfer coefficient was of the same

i order of magnitude as the theoretical value estimated by standard heat transfer calculations.

1. Introduction

A variety of directional solidification tech-

niques are used for preparation of materials, espe-

cially for growth of single crystals. These tech-

niques include the vertical Bridgman-Stockbarger,

horizontal Bridgman, zone-melting, and gradient
freeze methods. It is time consuming and costly to

experimentally determine the optimal thermal
conditions of a furnace utifized to grow a specific

material. Hence, it is desirable to employ analyti-

cal and numerical models to assist in determining

the optimal thermal conditions for a specific

growth system, e.g. vertical Bridgman-Stock-
barger technique [1-6]. Such calculations are

handicapped by limited knowledge of the growth
environment's thermal characteristics.

The heat transfer coefficient, defined as the

ratio of the heat flux to the temperature difference
between the material and the furnace, is an im-

portant thermal parameter in a growth system.
The heat transfer coefficient manifests itself in the

heat transfer models as the Biot number hR/k,
where h is the heat transfer coefficient, R is the

sample radius, and k is the thermal conductivity

of the sample. The Biot number may be regarded
as the ratio of the ease of heat exchange with the

furnace to heat conduction through the charge.

Chang and Wilcox [1] showed that increasing

the Biot number in Bridgman growth affects the

position and shape of the isotherms in the furnace.

The sensitivity of interface position to the hot and

cold zone temperatures is greater for small Blot
number.

Fu and Wilcox [2] showed that decreasing the
Biot numbers in the hot and cold zones of a

vertical Bridgman-Stockbarger system results in

isotherms becoming less curved. The planar iso-

therms lie in the lower portion of the adiabatic

zone when the heater's Biot number is larger than

the cooler's Biot number. Increasing the cooler's
Biot number moved the position of the planar

interface toward the upper section of the adiabatic
zone.

Although the heat transfer coefficient may be
estimated from heat transfer principles [5,7], con-

siderable uncertainties make an experimental value

preferred. We report an experimental approach to
determine the average heat transfer coefficient be-

tween the growth material and the furnace. This is

accomplished by in-situ temperature measurement

of a transiently cooled object, i.e. melt or solid

contained in an ampoule. In this technique, an

isothermal charge at temperature To is suddenly

moved to a chamber at temperature T_. The tem-

perature of the charge is measured as a function of
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time with a thermocouple. The data obtained are

used in a lumped-capacity model to calculate the

average heat transfer coefficient between the

molten charge and its surroundings. A GaSb

charge was used to demonstrate the method. The

validity of the lumped-capacity model was ex-

amined by use of the one-dimensional transient

heat transfer problem between a rod and its sur-

roundings and comparing the results of this analy-

sis with the lumped-capacity solution. The one-di-

mensional transient problem considers radial tem-

perature gradients in the rod.

2. Lumped-capacity model

The value of the heat transfer coefficient de-

pends on the geometry of the system as well as the

physical properties and temperatures of the

material and its environment. A simple, but im-

portant method, based on a lumped-capacity solu-

tion [8] can be used to determine the average heat

transfer coefficient between an object and its sur-

roundings from the transient cooling of the object.

The analysis assumes that the object is isothermal.

This object at temperature TO is introduced sud-

denly into an environment at temperature To¢. The
heat transfer coefficient is calculated from the

change in temperature of the object as a function

of time. The analytical development of the

lumped-capacity model is presented in ch. 4, pp.

101-108, of Ozisik [8]. The temperature-time rela-

tionship is given in non-dimensional form as:

In 0= (-2 Bi)r, (1)

where Bi - hR/k, 6 = (T- T_)/(T o - Toe), _"=
at/R 2, and a is the thermal diffusivity of the

object. The Biot number is found from the slope
of a In 0 versus _" plot and the heat transfer

coefficient is given by:

= Bi k/R. (2)

In our experiments, the object consisted of a

molten GaSb charge contained in a quartz ampoule

(discussed in detail in the experimental section).

The environment was a vertical Bridgman-
Stockbarger furnace. The ampoule wall added a

resistance to the heat transfer between the charge
and the furnace. To include the effect of such

resistance on the heat transfer coefficient, some

modifications of the thermophysical properties in

eqs. (1) and (2) were necessary. (A similar ap-

proach was undertaken by Naumann [5].) The
mass weighted effective thermal conductivity and

_eff =

thermal diffusivity are defined as follows:

p_k_ + p_V_k_

kerr = P_ + Pa_ ' (3)

(pcV,ko+ +
PavgCeff (PcVccc + PaVaca)(PcV c + PaVa) '

(4)

where all parameters are defined in the table of
nomenclature. The effective heat transfer coeffi-

cient then becomes:

heft- Bieffkeff/Ra, (5)

where R a is the outer radius of the ampoule and

Bier f is found from the slope of the In 8 versus

%, = a_fft/R2a plot.

3. Validity of the lumped-capaci D' modal

In order to determine the validity of the

lumped-capacity model for different ranges of the
Blot number, a similar model was solved which

takes radial temperature gradients in the sample
into account. This model assumes that the heat

flow is axisymmetric, the temperature in the rod is

uniform in the axial direction, and the density,

specific heat, and thermal conductivity of the rod
are independent of temperature. It is valid for all
values of the Biot number. The solution to this

problem is given in ch. 7, pp. 201-202, of Carslaw

and Jaeger [9]. When this solution is simplified to

give the dimensionless temperature at the center-

line of the rod, the following equation results:

T-Too
O=

To-Too

Bi exp(-Ffr), (6)=2 -, Jo(r.)(r + Bi2)
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where the eigenvalues F, are roots of the equa-
tion:

F, Jt(F,) = Bi Jo(F,), (7)

and J0 and J_ are Bessel functions of order zero

and one, respectively. For the range of Biot num-
bers studied, ten terms of the infinite series were

determined to yield an accuracy of more than 5

significant digits in 8.

When the series in eq. (6) is truncated after the

first term, the following equation is obtained:

2 Bi }lnO'=ln jo(Fl)(F_ + Bi:) - F_r.
(8)
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Fig. 2. Relative error caused by assuming the Biot number
equals -0.5 times the slope of a In 0 versus r plot. The line

represents the 2nd order polynomial fit given by eq. (10).

In order to determine when the series could be

truncated after the first term, the error in trunca-
tion had to be determined as a function of dimen-

sionless time r and Biot number. The relative

truncation error was defined to be (0'-O)/0,
where 0 is the exact solution which was taken as

the value of 6 when the series was truncated after

ten terms. The dimensionless time _'cr, beyond
which the truncation error is Jess than 0.01 is

plotted in fig. 1 for values of the Biot number
between 0 and 0.9. For values of the Biot number

between about 0.05 and 0.9, the critical dimen-

0.25

0.20

0.1,5

b.o
0.10

0.05

0.0 0.2 0.4 08 0.a J.0
13ioL Number

Fig. 1. The dimensionless time %nt versus Biot number past

which the error in # caused b)' truncation of eq. (6) after the

first term is less than 0.01. The line represents the 5th order

polynomial tit given by eq. (9).

sionless time is given by the 5th order polynomial
fit:

"rcrit_-" 3.02 Bi s - 8.54 Bi 4 + 9.32 Bi 3 - 5.03 Bi 2

+ 1.48 Bi - 0.0302. (9)

Eq. (8) is accurate to within 1% in dimensionless

temperature for dimensionless times greater than

_'cr_,. Therefore, a plot of In 8 versus _" should be

linear after time q'cnt- If a linear regression analysis
is carried out on experimental data at dimension-

less times greater than %n,, F_ is given by the

square root of the negative of the slope. This

experimentally determined value of /'1 can then be

used in eq. (7) to calculate the Biot number.

Eq. (8) is similar to the lumped-capacity solu-

tion, except that the intercept is not zero and the

slope is -F_ as compared to -2 Bi from the
lumped-capacity model. The validity of the

lumped-capacity solution can be assessed by
calculating the relative error caused by assuming

the Biot number equals the negative of the slope

of a In 0 versus _, plot divided by two. The

relative error can be defined as (Bi- F_/2)/Bi,

where Bi is the actual Biot number and F_ is

calculated from eq. (7). The relative error is plotted

in fig. 2 as a function of Biot number and is given

by the 2nd order polynomial tit:

relative error = -0.0373 Bi 2 + 0.248 Bi, (10)
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for Biot numbers between 0 and 0.9. The relative

error is almost a linear function of Biot number in

this region.

This analysis suggests that care must be taken

when applying the lumped-capacity model to ex-

perimental data. A linear regression analysis

should only be done for values of T > q'crit. When

the Blot number is large, most of the temperature

change could occur before 'rcrit and the error in

assuming the slope equals -2 Bi becomes large.

Also, the experimental error in temperature mea-

surement causes large errors in the value of In O

when T approaches T_. This is best demonstrated

by example. Let us consider the case when TO=

800 o C, T_ = 700 o C, and the error in measure-

ment of the object's temperature is I°C. If the

temperature of the object T is 750 oC, the error in

the resulting value of In O is only 3%. However,

when the temperature of the object is 701°C, the

error is 15%. Another important point when

applying the lumped-capacity model is that the

straight line should not be forced through the

origin. A two-parameter regression analysis should

be performed, as suggested by eq. (8).

4. Experimental technique

The lumped-capacity method was demon-

strated using an ampoule and thermocouple

arrangement containing molten GaSb situated in

the heater of a Bridgman-Stockbarger furnace at

temperature TO. The ampoule was moved suddenly
to a region of different temperature T_. The tem-

perature versus time data were collected as the

melt equilibrated to the new temperature and the

lumped-capacity model was used to determine the

heat transfer coefficient between the ampoule and
furnace.

The experimental apparatus consisted of a

three-zone vertical Bridgman-Stockbarger fur-
nace. The heating zones of the furnace were made

of Kanthal heating elements embedded in

Fibrothal insulation. The 5 cm long adiabatic zone

was fabricated from zirconia insulation. Quartz

tubing was used as a liner in the furnace. Two

K-type thermocouples, inserted halfway into the

heaters between the furnace wall and the liner,

determine heat transfer coefficient m DS furnaces

Quarlz a rnpo u I¢ ...._..__

Vacuum seal --

GaSh charge --

K-type Ihermocouple ____
wilh 310 s.s. shealh

Graphite plug

Quartz capillary
plug

Vacuum seal

Zenith 248Microcnmpuler

fMetra-Byte Multichannel__Data Acquisition System_

Fig. 3. Schematic dial ram of ampoule and thermocouple

arrangement with data acqutsition system for in-situ tempera-

ture measurements.

were used for control. Both ends of the furnace

were plugged to eliminate the chimney effect.
The 0.9 cm inner diameter and 1.1 cm outer

diameter quartz growth ampoule, shown in fig. 3,

was loaded with a 7 cm long GaSb charge, com-
pounded from six-9s purity Ga and Sb in a rock-

ing furnace for 5 h at 820 o C. The temperature in

the melt was measured using a 0.041 cm diameter
grounded K-type thermocouple with a 310 stain-

less steel sheath and MgO as insulation (made by
General Measurements). The tip of the thermo-

couple was positioned 3 cm into the ampoule at
the center of the charge.

The molten charge was allowed to reach ther-

mal equilibrium with the surroundings prior to
each experiment. For experiments 1 and 2, the

ampoule was suddenly moved from the lower zone

to the upper zone and held firmly. While for

experiment 3, the ampoule started in the upper
zone and was moved to the lower zone. The ther-

mocouple output was collected versus time using a

data acquisition system.

5. Results

5.1. Experimental determination of heat transfer

coefficients

Fig. 4 shows the actual thermocouple readings

collected from the molten GaSb during experi-
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t

Fig. 4. Thermocouple readings in molten GaSb. The circles,

triangles, and squares represent the data of experiments I, 2,

and 3, respectively.
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Fig. 5. Experimental data and the resulting linear fit (R 2ffi

0.9993) for experiment 1.

ments 1, 2, and 3 (see also table 1). The logarithm
of the dimensionless temperature 0 was plotted

versus dimensionless time _'etr for each experi-

ment. Linear regression analyses using NCSS Stat-

istical Software were performed to determine the

slopes and intercepts of these plots. The plot for

experiment 1 is shown in fig. 5.

The linear regression analysis for experiment 1

was performed on the data for _'eff between 0.1
and 18. There are two reasons that these limits for

'l'eft were chosen. The value of Tent, beyond which

the relationship between In 8 and r_fr is linear, is
less than 0.1. Also, the experimental data tend to

bend upward beyond _rff = 18. The reason for this
is the magnification of experimental error at small

values of 0. (Both of these explanations are dis-

cussed fully in section 3). The resulting linear fit is

8 = (-0.142 ± 0.0006)T + (0.0697 ± 0.0059). The

uncertainty values are 95% confidence limits on

the slope and intercept, which can be transformed
into 95% confidence limits on the Blot number.

The lumped-capacity solution leads to a Blot
number of 0.0712 + 0.0003 determined from the

slope. The value of the Blot number determined

using the model accounting for radial temperature

gradients is 0.0725 ± 0.0003.

The same analysis as above was performed for

experiments 2 and 3. The linear regressioJa analy-

sis for experiment 2 was performed on the data for

r_tf between 0.1 and 20. The linear fit is 6=

(-0.138 5: 0.0004)_, + (0.0407 ± 0.0042). The

lumped-capacity solution leads to a Blot number
of 0.0689 + 0.0002. The value of the Blot number

determined using the model accounting for radial

temperature gradients is 0.0701 ± 0.0002. For ex-

periment 3, the linear regression analysis was per-

formed on the data for Zeff between 0.1 and 15.
The linear fit is 0 = (-0.171 -1-0.0008)r + (0.0522

5: 0.0073). The lumped-capacity solution leads to

Table 1

Listing of the temperatures of the upper zone T u, lower zone

Tt,, the initial charge temperature To, and final steady-state

charge temperature T,_ for experiments 1, 2, and 3

Experiment Temperature (* C)

r_ rt To r_

1 800 890 871 792

2 800 890 876 794

3 870 780 855 762

a Blot number of 0.0855 5: 0.0004. The value of

the Blot number determined using the model

accounting for radial temperature gradients is
0.0873 5: 0.0004.

The heat transfer coefficients obtained for ex-

periments 1, 2, and 3 are presented in table 2.

There are two different values for each experi-

ment. One is from the lumped-capacity model and
one is from the model which accounts for radial

temperature gradients.
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Table 2

Comparison of the experimentally determined and theoreti-

cally estimated values of the heat transfer coefficient for ex-

periments 1, 2, and 3

Experiment h (W/cm 2- K)

Lumped- Radial Theoretical

capacity model estimation

model

1 0.0189 0.0193 0.0220

2 0.0183 0.0186 0.0220

3 0.0227 0.0232 0.0189

ature of the control thermocouple were used for Ta

and T,, respectively. The values of Ta = 793°C

and T h= 800°C for experiments 1 and 2, and

Ta---762°C and Th=780°C for experiment 3
were used in calculation of the heat transfer coef-

ficients.

The values of h calculated for experiments 1, 2,

and 3 were 0.0220, 0.0220, and 0.0189 W/cm 2. K,

respectively. The estimated heat transfer coeffi-

cients are compared with the experimentally de-
termined values in table 2.

5.2. Theoretical estimation of heat transfer coeffi-
cients

The heat transfer coefficient between the

ampoule wall and the furnace could also be esti-

mated by a simple heat transfer formulation. The
heat transfer coefficient is derived by summing the

heat transfer by radiation and conduction through

the air gap between the ampoule and the furnace

wall in a concentric cylindrical system and

equating it to the heat flux per unit area Q through

the ampoule containing the growth materials:

Q=h(T h - = o,F(T - T:)

ka.(r -
+ R. ln(R,/R.)" (11)

The contribution of natural convection between

the ampoule and the furnace was determined by

computing the Grashof number in the air gap
between the ampoule and the quartz liner. We

estimated the Grashof number for our experi-
ments to be 246 and concluded that the contribu-

tion of natural convection to the heat transfer was

insignificant [10]. Therefore, the convective heat
transfer term was not included in eq. (11).

The view factor F = 0.9 was approximated using

the view factor for finite-length concentric cylin-

ders (i.e. furnace-ampoule) [8]. The ampoule tem-

perature T_ was assumed to be the same as the

temperature of the molten charge, since the
ampoule wall was only 0.1 cm thick compared to

the 0.45 cm charge radius. The steady-state tem-

perature reading in the charge T_ and the temper-

6. Discussion

Fig. 6 depicts the comparison between the Blot

numbers calculated from the lumped-capacity

model (Bi = -m/2) and from the model includ-

ing radial temperature gradients (F_ = _-S-m, Bi

=FIJ1(F1)/Jo(FI)). The horizontal and vertical

lines in the figure represent 95% confidence limits
on the values of the Blot number. The three data

points would fall along the solid diagonal line if

the results from the lumped-capacity model agreed

exactly with the theory that considers radial tem-

perature gradients in the charge. The dashed line

0095C::

.o

0 085 /

E
E
0 0.075

0 _ _ _r_5

0065
o065 0075 o.oa5 o.09_

Blot from Equation (7)

Fig. 6. Comparison between the Biot numbers calculated from

the slope using eq. (1) (lumped-capacity model) and using eq.

(7). The horizontal and vertical lines in the figure represent

95% confidence limits on the values of the Biot number. The

dashed line represents the calculated relative error between the

two models and is given by eq. (10).
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represents the calculated relative error between
the two models and is given by eq. (10).

The Blot numbers calculated from the model

accounting for radial temperature gradients were

greater than those calculated from the lumped-

capacity model. The fact that the three data points

fall on the dashed line proves the relationship

between the lumped-capacity Blot number and the

radial temperature gradient Blot number is satis-

fied exactly. If the Blot number is determined

using the simple lumped-capacity model, the cor-

rect Blot number can be calculated by finding the

root of the rearranged form of eq. (10):

f(Bi) = 0.0373 Bi 3 - 0.248 Bi 2 + Bi - Bi L = 0,

(12)

lower zone is approached. This temperature gradi-
ent caused axial heat transfer which could have

increased the heat transfer coefficient.

It is also probable that natural convection was

present in the liquid during the experiments. How-

ever, the effect of natural convection would not be

expected to be large in a low Prandtl number fluid
like a semiconductor melt.

The values of the heat transfer coefficient

calculated experimentally differ by 15% from sim-

ple theoretical estimations. This difference is quite
small and could be due to inaccuracies in the

values of emissivity and view factor.

7. Conclusions

for values of the Blot number between 0 and 0.9,

where BiL is the Blot number calculated using the

lumped-capacity model.

Experiments 1 and 2 were almost identical, yet

the Blot numbers calculated from each differ by
about 4%. This difference could have been caused

by a change in the position of the charge within

the furnace. The lengths of the heated zones were

15 cm, not overly long compared to the charge

length of 7 cm. It is possible that one or both
experiments were influenced by the charge being

positioned in a region where the temperature

changed with height in the furnace. This would

cause axial temperature gradients in the melt that

would violate the assumptions of the models used.
However, the small difference in Blot numbers

between experiments 1 and 2 is not significant

when considering the fact that heat transfer coeffi-

cients depend continuously on position in a crystal

growth furnace, and this technique was used to get
an overall value for the heat transfer coefficient in

a zone.

The Biot number calculated from experiment 3

was about 205g higher than those calculated from

experiments 1 and 2. Experiments 1 and 2 mea-

sured the heat transfer coefficient in the upper

zone, while experiment 3 measured that in the
lower zone. The difference in heat transfer char-

acteristics between the upper and lower zones was

unexpected. These zones are constructed identi-

cally. The temperature drops as the bottom of the

A practical, experimental approach was devel-

oped to determine the average heat transfer coeffi-

cient between a charge and directional solidifica-

tion furnace. It was determined that the lumped-

capacity model is accurate in determining the Blot

number within a relative error given by eq. (10)
for Blot numbers between 0 and 0.9. However,

this is only if the linear regression analysis on the

In 8 versus r plot is carried out for values of

> %nt, where _nt is given by eq. (9). The straight
line fit should not be forced through the origin

because the theory that accounts for radial tem-

perature gradients predicts a slope and a non-zero

intercept. For values of r > %,i,, the Blot number

can be determined exactly by obtaining F1 from
the slope of a In 8 versus r plot. This value can
then be used to calculate the Blot number from

eq. (7).
The heat transfer coefficient between the

ampoule and the furnace was estimated by a sim-

ple formulation accounting for conduction and

radiation across the air gap. Remarkably, the re-

sults differ by only 15% from the values calculated

by the lumped-capacity method.
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Nomenclature

A

Bi

Bi _.

Surface area of the charge (17.3 cm 2)

Biot number hR/k

Effective Biot number between the charge

and ampoule and the furnace, heffRa/k¢ff

Bi L Biot number calculated by the lumped-
capacity method

c a Specific heat capacity of the ampoule (ca -=
1.19 J/g. K at 1075 K for fused silica [11])

cc Specific heat capacity of the molten GaSb
charge calculated using thermal conductiv-

ity, thermal diffusivity, and density data

(for GaSb 0.328 J/g. K)

ccrf Mass weighted average effective specific

heat capacity of charge and ampoule combi-

nation, cerf = (P_V:c + pY:a)/(pcVc + paVe)

(0.479 J/g. K for present experiments)
F View factor from furnace wall to the

ampoule (0.9 for present configuration)
h Heat transfer coefficient (W/cm 2. K)

Average heat transfer coefficient between

the growth material and the furnace
(W/cm _- K)

h,ff Effective average heat transfer coefficient

between the charge and ampoule and the

furnace (W/cm 2. K)

d, Bessel function of order n

k Thermal conductivity (W/cm • K)

k_ Thermal conductivity of ampoule (2.42 ×
10-ST+ 4.48 × 10 -3 W/cm.K for fused

silica [14], k_=0.0308 W/cm. K at T=

1075 K)

k_ Thermal conductivity of the charge (0.171

W/cm- K for molten GaSb [12])

kar Mass weighted effective thermal conductiv-

ity of charge and ampoule (0.146 W/cm- K)

L Length of the charge (7 cm)

m Slope of linear equation

Q Heat flux per unit area through ampoule
(W/cm 2)

R Radius (cm)

R a Outside radius of ampoule (0.55 cm)

R c The charge radius (0.45 cm)

Rr Inside radius of furnace (3.81 cm)

t Time (s)

T Temperature at time t (° C)

T_ Ampoule temperature (° C)

Th Heater temperature ( ° C)

Te Temperature of the lower furnace zone (° C)

T u Temperature of the upper furnace zone (° C)

To Initial temperature of charge (°C)

T_ Steady-state temperature of charge (° C)

Va Volume of the section of ampoule contain-

ing the charge;

R = ,rL(R_ - R2c) (2.2 cm 3)

V_ Volume of the charge (4.46 cm 3)

a Thermal diffusivity (cm2/s)

a_ Thermal diffusivity of charge (0.087 cm2/s

for molten GaSb [12])

a,f t Effective thermal diffusivity of charge and

ampoule (0.0628 cm2/s)

F. nth eigenvalue

c Emissivity of the furnace (for Kanthal c =

0.75 [15])

0 Dimensionless temperature ((T-T_)/(T o

- r_))
0' Dimensionless temperature calculated from

eq. (8)
Pa Density of ampoule wall, (2.28 x 10-4T+

2.273 g/cm a for fused silica [17], 0a = 2.586

g/era 3 at 1075 K)

Oavg Average density of charge and ampoule,
Pavz= (pcVc + PaVa)/(Vc + Va) (4.85 g/cm 3)

p_ Density of charge (5.98 g/cm _ for molten

GaSb at 800 °C [16])

o Stefan-Boltzrnann constant (5.67 × 10 -12

W/cm 2 • K 4)

r Dimensionless time (at/R 2)

T¢nt Dimensionless time beyond which eq. (8) is
valid

%rf Effective dimensionless time (a,ff t/R 2)

References

[1] C.E. Chang and W.R. Wilcox, J. Crystal Growth 21 (1974)
135.

[2] T.W. Fu and W.R. Wilcox, J. Crystal Growth 48 (1980)
416.

[3] F.M. Carlson, A.L. Fripp and R.K. Crouch, J. Crystal
Growth 68 (1984) 747.

[4] C.J. Chang and R.A. Brown, J. Crystal Growth 63 (1983)
343.

[5] R.J. Naumann, J. Crystal Growth 58 (1982) 554.
[6l P.C. Sukanek, J. Crystal Growth 58 (1982) 208.
[7] T.W. Fu, PhD Thesis, Clarkson University (1981).



M. Banan et al. / Experimental approach to determine heat transfer coefficient in DS furnaces 565

[8] M.N. Ozisik, Heat Transfer; A Basic Approach

(McGra_'-Hill, New York, 1985).

[9] H.S. Carslaw and J.C. Jaeger, Conduction of Heat in

Solids, 2nd ed. (Oxford University Press, London, 1959).

|10] W.H. McAdams, Heat Transmission, 3rd ed. (McGraw-

Hill, New York, 1954).

[11] E.B. Shand, Glass Engineering Handbook, 2nd ed. (Mc-

Graw-Hill, New York, 1958).

[12] A.S. Jordan, J. Crystal Growth 71 (1985) 551.

[13] R.C. Weast, Handbook of Chemistry and Physics (CRC

Press, Boca Raton, FL, 1986).

[14] Y.S. Touloukian, R.W. Powell, C.Y. Ho and P.G. Kle-

mens, Thermophysical Properties of Matter, Vol. 2, Ther-

mal Conductivities (IFl/Plenum Data, New York, 1970).

[15] Kanthal Corporation, Bethel, CT.

[16] V.M. Glazov, S.N. Chizherskaya and N.N. Glagoleva,

Liquid Semiconductors (Plenum, New York, 1969).

[17] Y.S. Touloukian, R.K. Kirby, R.E. Taylor and T.Y.R.

Lee, Thermophysical Properties of Matter, Vol. 13, Ther-

mal Expansion (IFI/Plenum Data, New York, 1973).


